.atenaweb.com/2x40-gw-green-hydrogen-initiative/. Atena, [Online]. Available

[1]

HYDROPOWER TO HYDROGEN

GOVERNMENT PRIORITIES FOR SUSTAINABLE HYDROPOWER DEVELOPMENT AND ROLE OF NEA

PRESENTED BY HITENDRA DEV SHAKYA, Managing Director

SLIDE GUIDELINES

- Existing Energy Scenario in Nepal
- Capacity Balance in Integrated Nepal Power System
- Energy Balance in Integrated Nepal Power System
- Energy Storage Systems Prime need for Sustainability
- Hydrogen, Nitrogen, Ammonia and Urea Production
- Role of Nepal Electricity Authority (NEA)

Peak Demand & Available Energy in Integrated Nepal Power System

Load Curve for Integrated Nepal Power System

System Load Curve (Maximum Demand) Bhadra 23, 2076 (Sep 9, 2019) Monday

System Load Curve (Minimum Demand) Baishakh, 11, 2077 (23 APR,2020), Thursday

Capacity Balance (2019-2030)

Capacity Balance, MW

Energy Balance (2019-2030) and Seasonal Energy Variation

Overview of Energy Storage Systems

	Max Power Rating (MW)	Discharge Time	Max cycles or Lifetime	Energy density (Watt-hour per liter)	Efficiency
Pumped Hydro	3,000	4 – 16 hours	30 – 60 years	0.2 - 2	70 – 85%
Compressed Air	1,000	2 – 30 hours	20 - 40 years	2 – 6	40 – 70%
Molten Salt (Thermal)	150	hours	30 years	70 – 210	80 – 90%
Li-ion battery	100	1 min – 8 h	1,000 - 10,000	200 – 400	85 – 95%
Lead Acid Battery	100	1 min – 8 h	6 – 40 years	50 – 80	80 – 90%
Flow Battery	100	hours	12,000 - 14,000	20 – 70	60 – 85%
Hydrogen	100	mins - week	5 – 30 years	600 (at 200 bar)	25 – 45%
Flywheel	20	secs - mins	20,000 - 100,000	20 - 80	70 – 95%

Storage of energy is essential for sustainability of Nepal hydro.

[1]

Fuel Cell and Its Selection

Fuel Cell Type	Typical Stack Size	Electrical Efficiency	Applications	Advantages	Challenges
Polymer Electrolyte Membrane (PEM)	<1 kW - 100 kW	60% direct H ₂ ; 40% reformed fuel	Backup powerPortable powerDistributed generationTransportationSpecialty vehicles	 Solid electrolyte reduces corrosion & electrolyte management problems Low temperature Quick start-up and load following 	Expensive catalystsSensitive to fuel impurities
Alkaline (AFC)	1 - 100 kW	60%	MilitarySpaceBackup powerTransportation	 Wider range of stable materials allows lower cost components Low temperature Quick start-up 	 Sensitive to CO₂ in fuel and air Electrolyte management (aqueous) Electrolyte conductivity (polymer)
Phosphoric Acid (PAFC)	5 - 400 kW, 100 kW module (liquid PAFC); <10 kW (polymer membrane)	40%	Distributed generation	 Suitable for CHP Increased tolerance to fuel impurities 	Expensive catalystsLong start-up timeSulfur sensitivity
Molten Carbonate (MCFC)	300 kW - 3 MW, 300 kW module	50%	Electric utilityDistributed generation	High efficiencyFuel flexibilitySuitable for CHPHybrid/gas turbine cycle	High temperature corrosion and breakdown of cell componentsLong start-up timeLow power density
Solid Oxide (SOFC)	1 kW - 2 MW	60%	Auxiliary powerElectric utilityDistributed generation	 High efficiency Fuel flexibility Solid electrolyte Suitable for CHP Hybrid/gas turbine cycle 	 High temperature corrosion and breakdown of cell components Long start-up time Limited number of shutdowns

Hydrogen Generation Flexibility

S.N.	Basis	Alkaline Electrolyser	PEM Electrolyser
1	Flow range	15 - 100 % Reference: https://nelhydrogen.com	10 - 100 % Reference: https://nelhydrogen.com
2	Start time	Warm start time = 0 - 1 hr Cool start time = 4 hr	Start up procedure = 10 min Cool start = 30 min
3	Cost	NRs. 75 lakhs for 50 kW system.	Expensive than Alkaline Electrolyser
4	Electricity consumption	4.5 kWh/ Nm ³ H ₂ From quotation from supplier	4.54 kWh/ Nm ³ H ₂ Reference: https://nelhydrogen.com

For 500 kW hydrogen electrolyser:

Lowest electricity consumption = 1,500 units in a day = 150 kg ammonia/day Highest electricity consumption = 10,000 unit in a day = 1 tons ammonia/day **Production:**

Lowest production = 27 kg hydrogen/day = 150 kg ammonia/day Highest production = 180 kg hydrogen/day = 1 tons ammonia /day Normal cubic meter (Nm3) -

Temperature: 0 °C,

Pressure: 1.01325 barA

Hydrogen Production

- Electrolyser consists of anode and cathode separated by electrolyte.
- Upon the flow of electricity, hydroxide ion is transported to anode through the electrolyte.
- For the production of Hydrogen, water with resistivity of 10 μS/cm is required. However, the typical water conductivity of drinking water is about 200 to 800 μS/cm.

Figure: Water Electrolysis for H₂ generation

Figure: Reverse Osmosis for water treatment

Cost of Hydrogen Production

Per kg COST OF HYDROGEN PRODUCTION (INVESTMENT, ENERGY AND O&M COST)

Nitrogen Production

- Firstly, the air is compressed, cooled and dried
- The air filter to remove impurities and oil
- After absorption and deabsorption, the nitrogen is stored and the oxygen is released form the double towers
- Obtained nitrogen is 99.95% pure

Figure: Nitrogen generation through Pressure Swing Absorption process

Ammonia Production

- Hydrogen from electrolysis
- Nitrogen from air separation
- Ammonia production according to Haber-Bosch process

$$3H_2 + N_2 \rightleftharpoons 2NH_3$$
, $\Delta H = -92 \text{ kJ/mol}$
 $(1kg) + (4.67kg) \rightarrow (5.67kg)$

Urea Production

- Ammonia from ammonia plant
- Carbon dioxide from carbon dioxide generation/ recovery plant
- Chemical Reaction involved in Urea production :

$$NH_3 + CO_2 \rightleftharpoons NH_2COONH_4$$

 $(5.67kg) + (7.33kg) \rightarrow (13kg)$

$$\begin{array}{ll} NH_2COONH_4 & \rightleftharpoons NH_2-CO-NH_2+ \ H_2O \\ (13kg) & \rightarrow & (10kg) + (3kg) \end{array}$$

एनइए इन्जिनियरिङ्ग कम्पनी लि. NEA ENGINEERING COMPANY LTD.

Normally urea is manufactured using Bosch-Meiser process

Historical Perspective : JICA Study on Urea

Study in 1984 with commencement target of 1991

Technical Parameters

Size: 275 tonne per day

Site Area: 500 m * 200 m

Location: Hetauda

Electric power: 76.1 MW

Coal: 76.8 tonne per day

Hydrogen: Electrolysis

Carbon dioxide: Cement plant flue gas

Power plant considered: Sapta Gandaki

(225 MW)

Financial Parameters

Total Investment: 144.79 Million USD

Foreign Currency: 82.8%

Local Currency: 17.2%

Loan/equity: 70% / 30%

ERR: 8.2%

Financially Viable: After 40% decrease in

tariff price

Case: Production of 1.8 Metric Ton Urea/Day

Figure: Process flow diagram of Urea Production

Figure: Price breakdown for 1 MT/ day ammonia production

Figure: Price breakdown for 1 MT/ day ammonia production

Figure: Price breakdown for 1 MT/ day ammonia production

Figure: Price breakdown for 1 MT/ day ammonia production

Plant Design for H2, N2 and Ammonia Production

Total Area: 238.72 sq. m

GROUND FLOOR PLAN

एनइए इन्जिनियरिङ्ग करपनी लि. **NEA ENGINEERING COMPANY LTD.**

AREA: 126.36 SQ. M

Role of Nepal Electricity Authority (NEA)

- Hydropower is seasonal, and there is a mismatch in load and generation
- Storage hydro is expensive and does not pay by itself only for energy, multiple benefits must be extracted
- Power trade and use of foreign market as buffer or storage is risky, energy security is required
- Technologies for use of surplus Seasonal energy will stimulate Seasonal Demand
- Demand will encourage hydro-power development
- NEA is active in demand stimulation in industries, agriculture and domestic areas

Role of Nepal Electricity Authority (NEA)

- Seasonal demand is the best fit. NEA and NEA Engineering Company Ltd are looking for research and development in this area
- Hydrogen generation using seasonal surplus (20 hours a day) is one solution
- If hydrogen generation helps urea production, it solves two problems of the nation with one stroke
- Similar demand industries such as Public EV charging and battery storage, controllable loads such as Cold Store and Irrigation pumps are interesting
- With better fuel cell efficiencies, hydrogen generation can be another
 Double Goal with hydrogen trucks and buses replacing petroleum and reducing pollution

Thank You!

एनइए इन्जिनियरिङ्ग करुपनी लि. NEA ENGINEERING COMPANY LTD.

md@neaec.com.np

Trade Tower, Thapathali,

Kathmandu, Nepal